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Although operational mathematics has been in existence for almost two hundred years,
the first systematic development of this procedure was made by Oliver Heaviside, in his
application of the differential operator to solving differential equations that governed elecro-
magnetic theory. As an engineer, he frequently encountered discontinuous terms that were
not easily compatible with previous differential methods; eventually the function modeling
them would be named after him:

w(t) = { 0, ift<b

1, ift>b

The function u(t) is called the Heaviside function. Although it occurs often in electrical
circuits, this function can be found in many places in both science and mathematics. The
advantage to using this function is that when integrated with the Laplace transform, a
continuous function is obtained, and the differential equation can be solved. Heaviside
used integral transforms to simplify the process of solving ordinary differential equations.
Eventually his methods would be superceded by the more rigorous formulation presented by
Laplace, but his applications and development of them were important and original.

The most frequent application of the Laplace transform is in engineering and physics.
Beginning with any linear differential equation, the Laplace transform can be applied to
each term of the equation, transforming all of the different derivatives into an equation
with no derivatives. Using complex algebraic methods, this equation can be solved in terms
of the transform of the original function. Then the inverse transform is applied to the
remaining terms of the equation, and the result is that the original function is solved for,
and no differential methods have been applied. This can greatly simplify the process of
solving differential equations, which is why it is so widely used in engineering and scientific
applications.

One of many integral transforms used in mathematics, the Laplace transform corresponds
to the kernel:

e—st

Exponential functions of this form occur frequently in differential equations. The Laplace
transform has many interesting applications in mathematics, and one of the more common
uses is to solve linear differential equations. The Laplace transform changes the operations
of calculus into those of algebra, sometimes making solutions significantly easier to obtain.

If the parameter s is changed to —iw, the kernel

eiwt

is obtained. This is the kernel for the familiar Fourier transform, which is also used frequently
in mathematics.

The Laplace transform is only defined under certain conditions. If a function

f:t—=RteR

is defined for all positive values of t, then the Laplace transform of f(¢), F(s), is defined by

F(s) = /000 e S f(t)dt

if this integral exists. Some care must be taken in evaluating the transform of certain
functions due to the improper integral. In order to obtain some useful operations with which
to solve differential equations, additional conditions must be specified on f(¢). The function
must be piecewise continuous, so that the integral over the sum of the intervals may be



replaced by the sum of the integrals over each interval. The function f(t) must also be of
exponential order -

e ft) <M
e ()] < Melor

- so that the Laplace integral converges when s > «. Conditions on the continuity of the
derivatives of f(¢) depend on the order of the derivatives being transformed. The Laplace
transform of f(¢) is generally abbreviated as:

L{f(1)} = F(s)

The Laplace transform must be linear, since by definition it is integration with respect to
a kernel:

LU0 +g(t)) = / tg(t))e " dt = / F(t)e ™ di+ /Oogme-“dt=£{f<t>}+£{g<t>}

The transform of a sum of functions is just the sum of the transforms of the functions.
The transform of a series is then a series of transforms. This property is very useful in solving
linear differential equations.

Calculating the Laplace transform of some simpler functions will allow us to calculate
more complicated ones, and also derive the inverse Laplace transform for some functioncs
necessary to solve differential equations. If f(¢) = 1, we have

[e.9]
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For s > 0, we can define the Laplace transform of 1:

1
1} = -
iy =
If f(t) =t, we have

F(s)=L{f(t)} = / te Stdt = —= te_St} + _/ et dt — —— st — -
0 0
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Again, for s > 0, we can define the Laplace transform of t to be:

Liy =5

In a similar way, the Laplace transform of any function ¢* can be calculated. A general
formula for this transform exists, given that s > 0 and o > —1:

Fa+1)
gotl

L{t*} =
One of the most important properties of the Laplace transform is the transform of the

derivative. It is possible to express the transform of the derivative of a function f(t) in terms
of the transform of the original function:

LU (1)) = / T Pt)etdt = f<t>e—ﬂj n / T sf(e Tt dt = —1(0) + sL{F(D))



L{f ()} = sF(s) = f(0)

This formula can be iterated to obtain the transforms of higher derivatives as well:
LLf"()} = sZ{f' (1)} = f'(0) = s*F(s) — sf(0) — f'(0)
L{H ()} = s"F(s) = s" 7 f(0) = 8" f/(0) — ... — f"7(0)

It is obvious that applying the Laplace transform to differential equations can potentially
greatly simplify the process of solving them. After transforming the derivatives into products,
isolating the transform of the function is very simple. However, applying the inverse Laplace
transform to solve for the function can be difficult. The inverse Laplace transform can be

denoted as follows:
F(s) = L{f(t)}

LTF(s) = LTL{f()} = f(1)

This is simply the inverse of the forward transform. For the purposes of solving most
differential equations, it is not necessary to define and evaluate explicitly the inverse Laplace
transform; rather, simply applying the known transforms and their inverses (obtained by
transforming functions in the forward direction) leads to all the necessary inverse transforms.

A powerful operation that can greatly assist in simplifying the process of solving the
inverse transform is convolution. This operation provides a way to find the inverse transform
of a product of functions without evaluating the inverse transform explicitly. Let f(¢) and
g(t) be piecewise continuous functions of exponential order for 0 < ¢ < co. Then, for s > a:

F(s) = / " pwear
F(S)e—bs _ /000 f(t)efsteibs df — /000 f(t)e,s(wb) dt

A substitution will allow this function to be re expressed in terms of the Laplace transform:

T=t+b

/boo Fr—be " dr = /ObOdT + /boo Flr=ble ™ dr

Define a function uy(t) such that

0, ift<b
“b(t):{ 1, ift>b

The function wu,(t) is the Heaviside function. Incorporating this into our integral, we may
rewrite the previous equality:

F(s)e ™ = /000 up(t) f(T)e™* dr

More specifically:
F(s)e™ = L{uy(t) f(t — b)}



We can use this equality to derive the properties of convolution. The Laplace transforms of
f(t) and g(t) are defined as:
F(s) = L{f(1)}

G(s) = L{g(t)}
Define ¢(t) to be 0 when ¢ < 0. Then, for s > a,

Gls)e= = L{g(t — )} = /Ooo gt — 7)dt

:/Ooof(T)eSTG(s) dT:/OOOf(T) /OOOeStg(t—T)dth

Since f(t) and g(t) are both of exponential order, this integral is uniformly convergent, and
the order of integration may be interchanged.

/ /f g(t — 1) drdt
/f ot —7)d

is called the convolution of f(¢) and ¢(t), and is denoted by

0= [ st

The previous equality may be rewritten in terms of convolution:

The integral

/ / (gt - 7)dr di = /Oooe‘st[f(t)*g(t)}dtzﬁ{f(t)*g(t)}

We can now define the original functions in terms of the inverse Laplace transform and

convolution:
ft)x g(t) = L7HF(s)G(s)}

To fully take advantage of this equality, it is useful to define the transforms of some
common functions. Consider the substitution 7 = at:

LAF(T)} = L{f(at)} = / T et flaty dt =+ / e fr)dr = L F(_>

w-c {2}

The transform of exponential functions is defined as:

>0 >0 1 >
cley= [emetan— [T e __{ewsﬁ} _
0 0 s+a 0 st+a
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The Laplace transform can be used to solve differential equations that would otherwise be
either more complex or more time consuming to solve using standard differential methods.
The Laplace transform also handles difficult functions such as the dirac delta function in a
very smooth manner. Let us apply the Laplace transform to one such differential equation:

f(t) +4f (1) = un(t)sin(2t), y(0) =0, y'(0) =1

Solving a differential equation with the Laplace transform requires three different steps. The
first step is to take the Laplace transform of both sides, which means the transform of each
term since it is a linear operator:

L{f"(t)} +4L{f ()} = L{ux(t)sin(2t)}
S2F(s) — sf(0) — £/(0) + AF(s) = /

0
Here we can make a substitution before utilizing integration by parts, twice. Let 7 =t — 7:

ur(t)sin(2t)e”* dt:/ sin(2t)e”*" dt

/ sin(2t)e " dt = / sin(2(r + m))e ) dt = e_m/ sin(2(1 +m))e " dt
s 0 0

/ sin(2(r +m))e T dt = —ge_STsz'n(Q(T + W))] + B / cos(2(T +m))e T dt
0 0 0

2 1 DR 2 4 [
= g{—ge_STcos(Q(T—l—ﬂ))L _g/o sin(2(t+m))e™*" dt}: ?—?/0 sin(2(t+m))e”*" dt
& 2
/0 SZTL(2<T + W))efsT dt = m
The next step is to solve for the transform of the solution:
2
$?F(s) — sf(0) — f'(0) +4F(s) = (s + 4)F(s) — 1 = me"”
s
2e°T 1

L{f(t)} = F(s) = (52+4>2+52+4

Now that we have solved for the transform of the solution to the differential equation, we
must apply the inverse transform to find the solution itself:

s = g e S = gemen + e S )

In order to evaluate the right hand term, we must utilize the convolution equality:

Ll{ﬁ} _ ﬁl{em} ] cl{ﬁ} (1) % % {sin(%) + 2tcos(2t)}

t

_ /O ot — u)é [sin(Zt) 4 2tcos(2t)} du = % {sm(Q(t ) + 2tcos(2(t — u))} 0

— —%[sin(%) + 2tcos(2t)]

Finally, we can express the solution as a function of t, without ever having used DE methods:

£(t) = gsm(%) - 2005(225)
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