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Experimental Details



Hadronic Weak Interaction

m
PC PV

Here is an example of a hadronic weak interaction. In the vertex on the
left, a nucleon strongly couples to a meson (in the model we use, this is a
π, ρ, or ω). In the vertex on the right, the meson will convert to a weak
boson, which will in turn couple weakly to the other nucleon.



Proton Asymmetry

If the polarization of the neutrons is precisely controlled, the parity of the
reaction can be observed. Since weak interactions do not conserve parity,
any weak coupling will produce an asymmetric distribution in the reaction
products. So we can use the measurement of the asymmetry as a test of
the strength of these weak couplings.



Angular Correlation

The experimentally measured asymmetry αphys arises from the observable
σn · kp, where σn is the direction of the neutron spin, and kp is the
direction of the proton’s momentum. In this experiment, the spin
orientation of the neutron is controlled through polarization and spin
rotation. So the parity-violating asymmetry is a function of this product:

dσ
dΩ

=
1
4π [1 + f (σn · kp)]

The resulting asymmetry in the distribution of proton momentum is how
the asymmetry is measured. Since the neutron spins will be always be
oriented along either ±ẑ , we can simplify the expression for the
asymmetry by using cos θ, where θ is the angle emission angle with
respect to ẑ and using ± to specify the spin state.

dσ
dΩ

=
1
4π (1± αphys cos θ)



Spallation Neutron Source

The Spallation Neutron source uses a series of proton accelerators and a
proton ring to generate bunches of protons with an energy of 1 GeV. These
protons are produced with a frequency of 60 Hz, and collided with a liquid
Hg target. The resulting spallation produces neutrons which are sent into
an array of guides for use in different experiments.



Fundamental Neutron Physics Beamline

The neutron spectrum that travels down FNPB guide looks like this.



Neutron Spectrum

A pair of choppers block neutrons outside of the peak intensity range. The
resulting spectrum has energies from approximately 2.5Å to 6Å.



Instrument Diagram

The experimental volume is contained inside large magnetic field coils
which produce a very uniform field along the neutron flight path of
9.14G. The neutrons exiting the polarizer are aligned with this field and
will maintain their spin state unless they are rotated.



Supermirror Polarizer

The neutrons are polarized by a combination of a nuclear and magnetic
scattering. At the energy scale of the neutrons used in this experiment,
they demonstrate optical behavior and can be manipulated with an "index
of refraction." By layering materials with different nucler and magnetic
cross sections, neutrons of one spin state can be reflected and absorbed,
so the transmitted beam is polarized in the other state.



Neutron Spin Rotator

In order to measure the asymmetry, the distribution of reaction products
must be compared for two opposite spin states. So we will use a
radio-frequency spin rotator to "flip" the spin orientation of all the
neutrons in every other pulse, and then compare the difference.

Neutrons in the holding field will undergo precession about the field axis
due to the torque τ = ~µ× ~B on their magnetic field moment. This
precession frequency, ω = 2µB

~ , determines the resonance condition
necessay for an applied field to rotate the spin state of the neutron.

As neutrons pass through the spin rotator volume, their spin orientation
will rotate according to the time spent in the volume. So the amplitude
of the rotator field must be different for different neutron velocities. We
can take advantage of the correlation between time of flight and energy
of the neutron in order to achieve this. If the amplitude of the rotation
field is adjusted proportionally to 1

t , neutrons of different velocities will
all undergo a rotation of π in the spin flipper volume.



Wire Chamber

The ion chamber contains both the target and detector – 3He gas at 0.476 at-
mosphere. Inside the vessel is a wire stack which contains the signal and voltage
wires which will be used to collect the ions.



Simulation



The Geometry Factor

The reaction products can be emitted in any direction in the ion
chamber. So the dot product that characterizes the strength of the
asymmetry, cos θ, can range from 0 (if the products are emitted in the
x − y plane) to 1 (if the products are emitted along ẑ). Depending on
their location in the ion chamber, different cells will have a varying
sensitivy to the physics asymmetry, which is a function of the location
and time of the measurement and is a weighted average of all events that
contribute energy in that element.

We will call that mean sensitivity the geometry factor and define it as:

Gκ ≡
〈Eκ cos θ〉
〈Eκ〉



Simulation Objectives

Some desired simulation objectives:

-Calculated geometry factors
-Optimized pressure
-Optimized collimation
-Estimated running time / uncertainty

In order to construct a successful simulation, one must find the best
compromise between complex physics and fast calculations. It also should
be scalable and able to take advantage of parallel resources. A custom
code will allow the best approximations to be made where available for a
given system.



Cell Model in Simulation

Neutron beam is incident from left, in the +ẑ direction.
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Chamber Geometry; Cross-Section View
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View in the yz-plane of the wire chamber.
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Detector Column

Example Reaction

n-3He reaction

Proton

Triton
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The proton carries 573 keV away from the reaction, and the triton carries 191 keV.
These products will ionize the 3He and travel a total of 12 cm in the gas.



Time Signal
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Shape of single 60Hz pulse as measured by the gas monitor.



Neutron Velocity Distribution
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Physical Beam Profile

The beam is scanned on a grid to determine the centroid and shape.1 Shown
here is the upstream scan, right after the neutrons exit the guide aperture.

1Beam divergence can also be modeled.



Physical Beam Profile

Let’s try to see if we can simplify this model in order to produce a more efficient
generator. If we decompose the intensity array, the first five sigma values are:

Σ1 = 1.634
Σ2 = 0.016
Σ3 = 0.004
Σ4 = 0.002
Σ5 = 0.001

So we can include only the first-order vectors, and retain 98.5% of the infor-
mation.



Physical Beam Profile

Now the image on the right shows the simulated beam profile. χ2 = 0.01

We can now use two one-dimensional generators instead of one two-
dimensional one with very good accuracy.



Cross Section
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Cross section generated from function, rather than by lookup, by taking
advantage of 1

v behavior. Linear parameter found by fitting ENDF data to
linear function: C = 2.92709



Ion Energy Deposition
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Energy deposition curve at 1 atm. This is adjusted depending on simulated
pressure. Pre-integrate deposition curves and interpolate the difference
instead of integrating every time!



Geometry Factors
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Ion Chamber Geometry Factors for P=7psi, coll=6cm
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Optimizations



Calculation of α

There are 144 signal wires in the ion chamber, and each pulse will be
divived into 49 time slices. So in total there will be 7056 signal elements
for every neutron pulse that reacts in the ion chamber. We will combine
each element asymmetry to form the combined physics asymmetry by
creating a weighted average:

α =
∑
κ

wκακ = ~w · ~α

∑
κ

wκ = 1

We can determine ~w by minimizing the uncertainty in α. So, now we
need to define the uncertainty in α: σα.



Covariance

At a pressure of 0.476 atmosphere, the total ionization range is 12cm.
The x-z dimension of one cell is 1.9cm, so the ionization energy of a
single reaction can be spread out over several cells. This means we
expect to see significant correlation of signals.

Therefore, it is necessary to treat the full covariance matrix in error
analysis, rather than calculating only the single-cell uncertainties. So, for
any two elements κ and β, define the covariance of their signals to be2:

σακαβ
=

〈EκEβ〉
2〈Eκ cos θ〉〈Eβ cos θ〉

2Can be derived through application of Poisson statistics.



Error in α

Apply error propagation to calculate the total error in α from the
covariance matrix:

σ2
α =

∑
i

∑
j

∂α

∂αi

∂α

∂αj
σαiαj =

∑
i

∑
j

wiwjσαiαj = ~wT · σ̂ij · ~w

Here we use the definition of the weight vector. Once we have solved for
~w , we can go back and calculate our total uncertainty.



Optimization Function

By applying the constraint to our uncertainty function, we can solve for
the weights:

∂σ2
α

∂wk
=

∑
i

wiσαiαj = λk
∂(

∑
i wi − 1)

∂wk
= I

⇒ wi =
∑

j
[σακαβ

]−1
ij

So now we can calculate the total uncertainty in the asymmetry:

1
σ2
α

=
∑

i

∑
j

[σακαβ
]−1
ij

To optimize the experimental parameters, simulate the uncertainty for
different values. We can apply this to the pressure of 3He and the
neutron beam collimation.



Optimization Curves for Pressure and Collimation
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Optimization curves for pressure and collimation
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